From Kyrgyz Internet Texts to an XML Full-form Annotated Lexicon: a Simple Semiautomatic Pipeline

Loïc Boizou (1) Dinara Mambetkazieva (2)

Vytautas Magnus University (1) Centre of Computational Linguistics (2) Institute of Foreign Languages

Introduction

- Despite its official position in Kyrgyzstan, Kyrgyz language still lacks resources, especially free resources that could be shared to develop applications.
- Nothing really new in the data processing presented in this work.
- Attempt to generate a free Kyrgyz resource as a way to foster future cooperation.

Centre of Computational Linguistics

I) Word list extraction

Kompiuterinė: lingvistikos centras

Centre of Computational Linguistics

The Corpus (1)

- Full texts (except Manas) available on line.
- Standard written language.
- 4 groups:
 - Literary texts;
 - News texts;
 - Institutional texts (universities, companies, state institutions);
 - Wikipedia articles.

The Corpus (2)

Kompiuterinės lingvistikos centras

- Size 170 texts, 1.6 million running words.
- Issues:
 - Small corpora.
 - Improper balancing (1/2 literature, overweight of some texts/domains).
- But: diversity seems sufficient to capture the basic lexicon.

Computational Linguistics

The word list

Kompiuterinės lingvistikos centras

Filtering & sorting.

Strings of Kyrgyz Cyrillic letters (+ digits).
Russian words left...
Latin-Cyrillic mixed strings removed.

Close to 130,000 distinct word forms.

lingvistikos centras

Centre of Computational Linguistics

Centre of Computational Linguistics

II) Morphological analysis

Kompiuterinė: lingvistikos centras

Centre of Computational Linguistics

Structure

Kompiuterinės lingvistikos centras

• 3 steps:

- Pre-processing. Linguistics

Analysis with a finite-state machine.
Post-processing.

Kompiuterinės lingvistikos centras

Centre of Computational Linguistics

Pre-processing

Kompiuterinės lingvistikos centras

- Double-sound letters ю, я, ё (and e after vowel)are replaced by equivalent letter sequences йу, йа, йо (and йе).
- Easier for morphemic segmentation:
 - ex. коюп → койуп (morphologically койуп)

Centre of Computational Linguistics

The finite-state machine

- Raw FSA.
- Suffixes only (intensive adjective not treated).
- Analysis from the end of the word until failure. Longer stem are preserved as alternative interpretations (parse tree).
- Guesser-style → all plausible segmentations are provided.
- No disambiguation at this stage.

The FSA (1)

Kompiuterinės lingvistikos centras

- Stored as simple Unicode text file.
- Each transition: starting state, next state, input string, grammar features.
- In general, 1 transition = 1 morphemic form.
- About 1000 transitions.

Centre of Computational Linguistics

The FSA (2)

Kompiuterinės lingvistikos centras

 Sequence *possessive* + *case* (often irregular) are treated together a single transition.

– эл-име / эл-ине (vs. эл-ге, эл-и)

 According to the result of the analysis, the stem is marked as verbal, nominal or both nominal and verbal.

 Adjectives are distinguished from nominals only for few suffixes.

Computational Linguistics

The FSA (3)

Kompiuterinės lingvistikos centras

- Opposition between derivational and inflexional suffixes marked as a feature.
- But some suffixes are on the border...
 Privative suffix -*сыз*, е.д. карындаштарымсыз "without my younger sisters" (utterance level), vs. жумушсуздук "unemployment" (embedded in a lexical derivative)

Such suffixes appear twice in the automaton.

Post-processing

Kompiuterinės lingvistikos centras

- Generation of lemmas (removal of flexional suffixes), selection of relevant features.
- Letters sequences йу, йа, йо, йе are reversed back to ю, я, ё, е inside morphemic units.

– Койон + дон → Коён + дон

Centre of Computational Linguistics

Centre of Computational Linguistics

III) Preparation of the lexicon

Kompiuterinė: lingvistikos centras

Centre of Computational Linguistics

Filtering

- Too short stems are removed:
 - One-letter stems and two-letter stems ended in vowel (except де "to say" and же "to eat").
- The simple FSA analysis left many cases of under- and over-stemming (Moral et al., 2014)
- Automatic removal of some understemming analysis (cautious approach...).

Manual correction

- The list of alternative morphological analyses is reviewed by a native speaker.
- Simple process,
 - '+' sign before correct morphological interpretations;
 - No correct interpretation \rightarrow Direct correction.
- Automatic suppression of blacklisted stems (marked with a '-' sign).
- Further step: a bit of automatic disambiguation?

Generation of the XML lexicon

- Automatic conversion of entries.
- According to TEI P5 standard.
- Structure directly follows the model provided by Budin et al. (2012).

Kompiuterinės lingvistikos centras

Centre of Computational Linguistics

The UD features

- TEI P5 let you choose the way you define grammar features.
- Universal Dependency defines part of speech and features descriptions.
- Available works about UD use for Turkish (Çöltekin, 2015, Eryigit et alii, 2016).
- Most features have natural counterparts, but some issues remain with the verb forms and modo-temporal categories (Kaşıkara, 2015).

Chosen UD verbal features: finite forms

- жазды : Tense=Past, Aspect=Perf
- жазган : Tense=Past, Aspect=Imp
- жазучу : Tense=Past, Aspect=Iter
- жазыптыр : Tense=Past, Evident=Nfh
- жазат : Tense=Pres (although it often expresses future)
- жазар : Mood=Pot Kompiuterines
- жазса : Mood=Cond
- жазсын : Mood=Imp (although Mood=Opt may be better)

Chosen UD verbal features: non-finite forms

- жазуу : VerbForm=Inf
- жазган : VerbForm=Part (homonym of the finite imperfect form 3rd person)
- жаза : VerbForm=Conv, Tense=Pres (Aspect=Imp might be an option)

– жазып : VerbForm=Conv, Tense=Past (Aspect=Perf might be an option)

Centre of Computational Linguistics

Final remarks

Kompiuterinės lingvistikos centras

- Lexicon size: about 20,000 lexemes?
- More shared resources.
- Standards → re-usability + comparability.
 Common UD features (other presentations on this topic).
- A common internet space for Kyrgyz resources?

– Possibly on a larger Turkic space.

References

Kompiuterinės lingvistikos centras

- Baisa, V., & Suchomel, V. (2012). Large Corpora for Turkic Languages and Unsupervised Morphological Analysis, Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12). Istanbul, Turkey.
- Çöltekin, C. (2015). A Grammar-Book Treebank of Turkish, Proceedings of the 14th workshop on Treebanks and Linguistic Theories (TLT 14). Warsaw, Poland.
- Eryigit, G., Gokirmak, M., Nivre, J., Sulubacak, U., Tyers, F.M., & Çöltekin, Ç. (2016). Universal Dependencies for Turkish. COLING.
- Kaşıkara, H. (2015). Universal Dependency Representation of Turkish: The Challenge of the Verb, Master thesis. Uppsala University.
- Moral, C., de Antonio, A., Imbert, R., & Ramírez, J. (2014). A survey of stemming algorithms in information retrieval, Information Research, 19, 1.
- Nivre, J. (2015). Towards a Universal Grammar for Natural Language Processing. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp 3-16). Springer/

Computationa Linguistics

Thank You for Your attention!

Questions, remarks, suggestions?

Kompiuterine lingvistikos centras

Centre of Computational Linguistics