On Various Approaches to Machine Translation from Russian to Kazakh

Aibek Makazhanov ${ }^{\text {a }}$, Bagdat Myrzakhmetov ${ }^{\text {a,b }}$, Zhanibek Kozhirbayev ${ }^{\text {a,c }}$

(a) National Laboratory Astana, Nazarbayev University, Astana
(b) School of Science and Technology, Nazarbayev University, Astana
(c) L.N. Gumilyov Eurasian National University, Astana

Outline

Motivation

Approaches to MT

Parallel Corpus

Experiments and Results

Conclusions and Future Work

Motivation: Why Russian to Kazakh?

- Strong demand: someone is probably doing R2K translation as I speak;

Motivation: Why Russian to Kazakh?

- Strong demand: someone is probably doing R2K translation as I speak;
- Resource rich: tons of accessible comparable text;

Motivation: Why Russian to Kazakh?

- Strong demand: someone is probably doing R2K translation as I speak;
- Resource rich: tons of accessible comparable text;
- Research poor: not too many people are doing it;

Motivation: Why Russian to Kazakh?

- Strong demand: someone is probably doing R2K translation as I speak;
- Resource rich: tons of accessible comparable text;
- Research poor: not too many people are doing it;
- Interesting problem: both languages are MCL.

Approaches to MT: Linguistically motivated (RBMT)

You will need:

- linguistic proficiency;
- lexicons for source and target language;
- tools: analyzers, taggers, parsers;
- transfer rules.

Approaches to MT: Linguistically motivated (RBMT)

You will need:

- linguistic proficiency;
- lexicons for source and target language;
- tools: analyzers, taggers, parsers;
- transfer rules.
$\mathrm{tl} ; \mathrm{dr}$: linguists + pain \& suffering (tons of) $=$ result.

Approaches to MT: Data-driven (NMT)

You will need:

- Encoder: source sentence \rightarrow iVector;
- iVector \rightarrow Decoder (MAGIC) \rightarrow target sentence;
- parallel corpus;
- additional monolingual corpus for target L (desirable);
- GPUs.

Approaches to MT: Data-driven (NMT)

You will need:

- Encoder: source sentence \rightarrow iVector;
- iVector \rightarrow Decoder (MAGIC) \rightarrow target sentence;
- parallel corpus;
- additional monolingual corpus for target L (desirable);
- GPUs.
tl;dr: data + DL framework $=$ result.

Approaches to MT: Data-driven (SMT)

You will need:

- $P(t \mid s)=P(s \mid t) P(t) ;$
- parallel corpus;
- additional monolingual corpus for target L (desirable);
- decoder.

Approaches to MT: Data-driven (SMT)

You will need:

- $P(t \mid s)=P(s \mid t) P(t) ;$
- parallel corpus;
- additional monolingual corpus for target L (desirable);
- decoder.
tl;dr: data + Moses stack $=$ result.

Approaches to MT: Hybrid (Factored SMT)

Approaches to MT: Hybrid (Factored SMT)

You will need:

- $P(t \mid s)=P(s \mid t) P(t) ;$
- (annotated!) parallel corpus;
- additional (annotated!) monolingual corpus for target L;
- decoder.

Approaches to MT: Hybrid (Factored SMT)

You will need:

- $P(t \mid s)=P(s \mid t) P(t) ;$
- (annotated!) parallel corpus;
- additional (annotated!) monolingual corpus for target L;
- decoder.
tl;dr: data + pain \& suffering + Moses stack $=$ result.

Approaches to MT

- Linguistically motivated: RBMT
- (+) easy to control/debug;
- (-) hard to develop/adapt;
- Data-driven: SMT, NMT
- (+) relatively easy to develop/adapt;
- (-) hard to control/debug;
- Hybrid (Data + Linguistics): factored SMT
- (+) supposed to be great for MCL;
- (-) hard to develop/adapt/control/debug.

Parallel Corpus

Website	Aligned	Cleaned	Filtered	Test set	Tuning set
www. akorda.kz	80333	75240	75199	150	100
www.primeminister.kz	111193	81060	79483	140	95
www. ortcom.kz	77468	73770	73610	130	100
www.nurotan.kz	63268	57043	56563	90	60
www. astana.gov.kz	105929	91010	90762	150	100
www.strategy2050.kz	372249	347560	345372	495	310
www.adilet.gov.kz	59489	30083	28744	75	50
www.economy.gov.kz	15179	11417	11398	20	15
www.dkz.mzsr.gov.kz	24813	7624	7232	15	15
www.kaztag.kz	52643	45653	45505	75	50
www.almaty.gov.kz	25176	18211	18036	30	20
www.mfa.gov.kz	12463	10466	10405	20	10
www.palata.kz	36394	33355	33206	70	50
www.expo2017astana.com	7244	6027	5963	10	5
www.emer.gov.kz	14199	11855	11756	30	20
Total	1069078	909189	893234	1500	1000

Parallel Corpus: Alignment

- Normalization: (\> = >) || (cepi = cepi);
- Sentence splitting: Punkt (Kiss and Strunk, 2006);
- Lemmatization: MyStem (Segalovich, 2003);
- Sentence alignment: Hunalign (Varga et al., 2007).

Parallel Corpus: Cleaning

Remove the following aligned sentence pairs:

- Duplicates;
- S 1 = S2;
- No alphabetics in either;
- $\mathrm{L}<3$ and $\mathrm{L}>50$.

Parallel Corpus: Filtering

Train and apply ML classifier that uses these features:

\#	DC	Feature	---------	\#	DC	Feature
1,2	S,T	length in characters		19,20	S,T	count of personal initials
3	ST	MMR(F1,F2)		21	ST	COS(F19*,F20*)
4,5	S,T	length in tokens		22,23	S,T	ratio of alphanumerics
6	ST	MMR(F4,F5)		24	ST	MMR(F22,F23)
7,8	S,T	count of symbols		25,26	S,T	count of words in quotes
9	ST	COS(F7*,F8*)		27	ST	MMR(F25,F26)
10,11	S,T	count of numerals		28,29	S,T	count of words in parenthesis
12	ST	COS(F10*,F11*)		30	ST	MMR(F25,F26)
13,14	S,T	count of digits		31	ST	num. of tokens in identical pairs
15	ST	COS(F13*,F14*)		32	ST	min-max ratio between unique tokens
16,17	S,T	count of latin alphanumerics				in source and target sentences
18	ST	COS(F16*,F17*)		33-35	ST	Hunalign score: absolute, relative, min-max scaled.

Parallel Corpus

Website	Aligned	Cleaned	Filtered	Test set	Tuning set
www. akorda.kz	80333	75240	75199	150	100
www.primeminister.kz	111193	81060	79483	140	95
www. ortcom.kz	77468	73770	73610	130	100
www.nurotan.kz	63268	57043	56563	90	60
www. astana.gov.kz	105929	91010	90762	150	100
www.strategy2050.kz	372249	347560	345372	495	310
www.adilet.gov.kz	59489	30083	28744	75	50
www.economy.gov.kz	15179	11417	11398	20	15
www.dkz.mzsr.gov.kz	24813	7624	7232	15	15
www.kaztag.kz	52643	45653	45505	75	50
www.almaty.gov.kz	25176	18211	18036	30	20
www.mfa.gov.kz	12463	10466	10405	20	10
www.palata.kz	36394	33355	33206	70	50
www.expo2017astana.com	7244	6027	5963	10	5
www.emer.gov.kz	14199	11855	11756	30	20
Total	1069078	909189	893234	1500	1000

Comparing data-driven approaches: setup

- SMT:
- Moses + KenLM;
- trigram LMs;
- MERT tuning;
- NMT:
- (i) LSTM, (ii) +Attention 2, (iii) +Attention 4;
- vocabulary -50 K most frequent;
- 128 hidden units;
- 0.2 dropout probability;
- 20000 iterations on Tesla k2025 GPU;
- Evaluation: automatic (BLEU)

Comparing data-driven approaches: results

Model	BLEU
SMT	34.15
Basic NMT	3.90
Attention NMT, 2 layers	9.14
Attention NMT, 4 layers	11.00

Comparing all of the approaches: setup

- RBMT:
- Apertium (rev. 82385);
- experimental system;
- (factored) SMT:
- factors: lemma, POS;
- $1 / 5$ training set;
- Evaluation: automatic (BLEU)

Comparing data-driven approaches: results

Model	BLEU
RBMT	6.41
Factored SMT	21.77
SMT	$\mathbf{2 4 . 7 3}$

Conclusions and Future Work

We have

- assembled a parallel R2K corpus;
- for R2K compared most popular MT approaches;

Conclusions and Future Work

We have

- assembled a parallel R2K corpus;
- for R2K compared most popular MT approaches;

We now know that

- NMT needs more resources;
- factored SMT needs more than lemma+POS;

Conclusions and Future Work

We have

- assembled a parallel R2K corpus;
- for R2K compared most popular MT approaches;

We now know that

- NMT needs more resources;
- factored SMT needs more than lemma+POS;

We will

- expand the parallel corpus;
- look for better NMT representations;
- experiment with various factors.

